EE 505

Lecture 26

ADC Design

- Pipeline
 - Noise
 - Switch Sizing
 - Bootstrapped Switches
 - Aperature Uncertainty

Capacitor sizing to meet noise requirements

For each stage: $P = [V_{SUP} \bullet GB \bullet C_{L}][V_{EB}]$

Should capacitor area be allocated to put dominant noise on input stage or later stages?

If part of the total noise comes from latter stages, size of capacitors on input stage can be reduced

An optimal noise distribution strategy should be followed!

Figure of Merit for Comparing Energy Efficiency of Op Amps

For Single-stage MOS implementation (with ref FD op amp or telescopic cascade op amp)

Energy Efficiency of Popular Single-Stage Op Amps

- Basic Single-Stage Diff Amp
- Current Mirror Op Amp
- Telescopic Cascode
- Folded Cascode
- Gain-Boosted Telescopic Cascode
- Gain-Boosted Folded Cascode
- -gm Compensated Single-Stage
- Telescopic Cascode Positive Feedback

Basic Single-Stage FD Op Amp

Review from last lecture

Is the linear settling time proportional to the reciprocal of the power even if parasitics are considered?

No – reach a point of diminishing returns as power is increased GB_{MAX} independent of C_L

What is a practical point of diminishing returns?

$$GB_{crit} = \frac{GB_{MAX}}{2} = \frac{1}{4\left[\frac{L_{MIN}^{2}}{\mu_{n}V_{EB1}}C_{xn} + \frac{V_{EB1}L_{MIN}^{2}}{\mu_{p}V_{EB3}^{2}}C_{xp}\right]}$$

Is the strategy of minimizing V_{EB1} to minimize settling time justifiable even if parasitics are considered?

No – but an optimal value of V_{EB1} can be obtained

Review from last lecture Is the strategy of minimizing V_{EB1} to minimize settling time justifiable even if parasitics are considered?

Substituting into GB_{MAX} expression, obtain

$$GB_{\text{MAX}} = \frac{\sqrt{\frac{\mu_{\text{n}}\mu_{\text{p}}}{C_{\text{Xn}}C_{\text{Xp}}}}V_{\text{EB3}}}{4L_{\text{MIN}}^2} = \frac{\omega_{\text{Tp}}}{4\sqrt{C_{\text{Xn}}C_{\text{Xp}}}}\sqrt{\frac{\mu_{\text{p}}}{\mu_{\text{n}}}}$$

Beview from last lecture Is the strategy of minimizing V_{EB1} to minimize settling time justifiable even if parasitics are considered? $GB_{MAX} = \frac{\omega_{Tp}}{4\sqrt{C_{Xn}C_{Xp}}} \sqrt{\frac{\mu_p}{\mu_n}}$

If GB_{MAX} is not high enough, interleaving may provide a viable solution in a given technology node

Improved Energy Efficiency Op Amps

For some closed-loop gains the two-stage op amp is more power efficient than the single-stage Op Amp

See ISCAS 2005

Power Dependence of Feedback Amplifiers on OpAmp Architecture

Vipul Katyal, Yu Lin and Randall L. Geiger

Performance Limitations

(consider amplifier, ADC and DAC issues)

- Break Points (offsets)
- ⇒ DAC
 - DAC Levels (offsets)
 - Out-range (over or under range)
 - Amplifier
 - ➡→ Offset voltages
 - → Settling Time
 - Nonlinearity (primarily open loop)
 - → Open-loop
 - → Out-range
 - Gain Errors
 - ➡ Inadequate open loop gain
 - Component mismatch
 - Power Dissipation
 - kT/C switching noise

I/O Power Dissipation

• Driving the output pads can consume considerable power

For a single bit line

/

For an n-bit ADC

$$P=n \bullet f_{CL} V_{SUP}^{2} C_{L}$$

Example: if n=14, V_{SUP}=3.3V, C_{L}=5pF, f_{CL}=100MHz, 50% change
$$P=14 \bullet 10^{8} \bullet \frac{1}{2} \bullet 3.3^{2} \bullet 5E-12=35mW$$

12

I/O Power Dissipation

• Driving the output pads can consume considerable power

For a single bit line

Interstage Amplifiers

Typical Finite-Gain Inter-stage Amplifier (shown single-ended with 1-bit/stage)

Boot-strapping sampling or bottom-plate sampling needed

sampling

Flip-Around Amplifier

 $\beta_{2} = \frac{C_{2}}{C_{1} + C_{2}}$ $\beta_{1} = 1$

 $A_{FB2} = 1 + \frac{C_{2}}{C_{1}} = \frac{1}{\beta_{2}}$

16

Flip-Around Amplifier

Flip-Around Amplifier Clock Timing

Reduces Sampling noise if quiet when ϕ_{1A} transitions

 $\beta_{2} = \frac{C_{2}}{C_{1} + C_{2}}$ $\beta_{1} = 1$ $A_{FB2} = \frac{C_{2}}{C_{1}} \neq \frac{1}{\beta_{2}}$

Popular SC Amplifier

How is GB determined?

$$\textit{GB}_{\rm \tiny RPS}\cong\frac{2ln(2)(n_{\rm \tiny ST}+1)}{\beta_{\rm \tiny MIN}}f_{\rm \tiny CLK}$$

(to settle to ½ LSB derived in Lecture 24)

How are switches sized?

$$\mathsf{R}_{_{\text{SW}}} = \frac{1}{\mathsf{Cf}_{_{\text{CLK}}} 2\mathsf{ln}(2)(\mathsf{n}_{_{\text{ST}}} + 1)}$$

(to settle to ½ LSB – will be derived later)

May need to use TG switch if large signals present but prefer to avoid !

Pipelined Data Converter Design Guidelines

Issue

- 1. ADC offsets, Amp Offsets, Finite Op Amp Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate
- 2. Op Amp Gain causes finite gain errors and introduces noninearity
- 3. Op amp settling must can cause errors
- 4. Power dissipation strongly dependent upon GB of Op Amps
- 5. Choice of FB Amplifier Architecture seriously impacts performance

Strategy

- 1. Out-range protection circuitry will remove this problem and can make pipeline robust to these effects if α_k 's correctly interpreted
 - a) Use Extra Comparators
 - b) Use sub-radix structures
- 2. a) Select op amp architecture that has acceptable signal swing
 - b) Select gain large enough at boundary of range to minimize nonlinearity and gain errors
- Select GB to meet settling requirements (degrade modestly to account for slewing)
- Minimize C_L, use energy efficient op amps, share or shut down op amp when not used,scale power in latter stages, eliminate input S/H if possible, interleave at high frequencies. Good (near optimal) noise distribution strategy should be followed.
- 5. Bottom plate sampling, bootatrapping, clock advance to reduce aperature uncertainty,critical GB, parasitic insensitivity needed, β dependent upon architecture and phase, compensation for worstcase β , TG if needed 21

Have probably not included the most important issue in these guidelines:

Pipelined Data Converter Design Guidelines

Issue

- ADC offsets, Amp Offsets, Finite Op Amp 1. Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate
- 2. Op Amp Gain causes finite gain errors and introduces noninearity
- 3. Op amp settling must can cause errors
- 4. Power dissipation strongly dependent upon GB of Op Amps
- 5. Choice of FB Amplifier Architecture seriously impacts performance

Correct interpretation of α_k 's is critical 6.

Strategy

- Out-range protection circuitry will remove this 1. problem and can make pipeline robust to these effects if α_k 's correctly interpreted
 - a) Use Extra Comparators
 - b) Use sub-radix structures
- 2. Select op amp architecture that has a) acceptable signal swing
 - Select gain large enough at boundary of range to b) minimize nonlinearity and gain errors
- 3. Select GB to meet settling requirements (degrade modestly to account for slewing)
- 4. Minimize C₁, use energy efficient op amps, share or shut down op amp when not used, scale power in latter stages, eliminate input S/H if possible, interleave at high frequencies. Good (near optimal) noise distribution strategy should be followed.
- 5. Bottom plate sampling, bootatrapping, clock advance to reduce aperature uncertainty, critical GB, parasitic insensitivity needed, β dependent upon architecture and phase, compensation for worstcase β , TG if needed 6.
 - a) Accurately set α_k values

b) Use analog or digital calibration

If the ON impedance of the switches is small and it is assumed that $C_1=C_2=C$, $R_{S4}=R_{S5}=R_{SW}$, it can be shown that for $C_1=C_2$

$$\hat{\boldsymbol{v}}_{\text{IN-RMS}} = \sqrt{\frac{\text{kT}}{2\text{C}} + \frac{\text{kT}}{4}\text{R}_{\text{SW}}\text{GB}}$$

Too much GB or too large of R_{SW} can increase sampled noise voltage

Too small of R_{SW} will not derive any benefit and will increase power, area, and driving problems

GB must be large enough to have complete settling

Capacitors introduce no noise

Noise is, however, present in switches that take samples

 This switch noise causes SNR problems in the amplifier if not correctly managed

Power spectral density of any resistor, R_{SW} , is given by

$$S_{_{V\!R}} = 4kTR_{_{SW}}$$

This is thermal noise and often termed "white" noise since the spectral dissipation is uniform for all f

Theorem 1 If $v_n(t)$ is a continuous-time zero-mean noise source with power spectral density S_v , then the spectral density of v_{OUT} is given by the expression

$$\mathbf{S}_{v_{out}} = |\mathsf{T}(\mathsf{s})|_{s=j\omega}^{2} \mathbf{S}_{v}$$

The RMS value of a continuous-time random variable V(T) is defined to be

$$V_{RMS} = E\left(\sqrt{\lim_{T \to \infty} \left(\frac{1}{T}\int_{0}^{T} V^{2}(t)dt\right)}\right)$$

The RMS value of a random sequence $\langle V(kT) \rangle$ is defined to be

$$\hat{\mathbf{V}}_{_{\mathrm{RMS}}} = E\left(\sqrt{\lim_{N \to \infty} \left(\frac{1}{N} \sum_{k=1}^{N} \mathbf{V}^{2}\left(\mathbf{kT}\right)\right)}\right)$$

(the operator E is the expected value operator)

(these definitions apply to non-random signals as well)

Theorem 1 If $v_n(t)$ is a continuous-time zero-mean noise source with power spectral density S_v , then the spectral density of v_{OUT} is given by the expression

$$\mathbf{S}_{v_{out}} = |\mathbf{T}(\mathbf{s})|_{s=j\omega}^{2} \mathbf{S}_{v}$$

Theorem 2 If v(t) is a continuous-time zero-mean noise voltage with power spectral density S_v , then the RMS value of the continuous-time noise is given by

$$V_{_{\rm RMS}} = \sqrt{\int\limits_{f=0}^{\infty} S_{_{\rm V}} df}$$

Note: There are some parts of the hypothesis of this theorem that have not been stated such as stationary of the distribution and no correlation between samples spaced T seconds apart..

$$\int_{y=0}^{\infty} \frac{1}{1+y^2} dy = (\tan^{-1} y)\Big|_{y=0}^{\infty} = \frac{\pi}{2}$$
$$\mathcal{V}_{n_{RMS}} = \sqrt{\int_{f=0}^{\infty} S_{vov} df} = \sqrt{\frac{kT}{C}}$$

Change of variable: $z=\omega RC$, $dz=2\pi RCdf$

Key Result, Continuous-time noise at VOUT

"kT/C" Noise at T=300K

Capacitance in pF

- Since noise is independent of V_{REF} , would like to make V_{REF} as large as possible to minimize C sizing
- Scaling to lower supply voltage has a negative impact on capacitor sizing (scaling supply by 2 requires increasing C by factor of 4 to maintain SNR)

Capacitance vs Resolution (V_{REF}=1V, 1/2 LSB level)

Example: 14-bit ADC C=4.6pF
Theorem 3 If V(t) is a continuous-time zero-mean noise voltage and $\langle V(kT) \rangle$ is a sampled version of V(t) sampled at times T, 2T, then the RMS value of the continuous-time waveform is the same as that of the sampled version of the waveform. This can be expressed as

Note: There are some parts of the hypothesis of this theorem that have not been stated such as stationary of the distribution and no correlation between samples spaced T seconds apart..

Theorem 4 If V(t) is a continuous-time zero-mean noise source and <V(kT)> is a sampled version of V(t) sampled at times T, 2T, then the standard deviation of the random variable V(kT), denoted as σ_{v} satisfies the expression

$$\sigma_{\rm v}=V_{\rm RMS}=\hat{V}_{\rm RMS}$$

Theorem 5 The RMS value and the standard deviation of the noise voltage that occurs in the basic switched-capacitor sampler is related to the capacitor value by the expression

$$\hat{V}_{\rm RMS} = V_{\rm RMS} = \sigma_{\rm v} = \sqrt{\frac{kT}{C}}$$

Key Result, Continuous-time noise at V_{OUT}

Key Result, Discrete-time noise at V_{OUT}

 $\hat{v}_{n_{RMS}}$

С

V_{CAP}

− V_{IN}

V

kT C

42

β₁=1

RMS Noise Voltage on capacitors C₁ and C₂

$$V_{\text{out}} = V_{\text{in}} \left(1 + \frac{C_{1}}{C_{2}}\right) - \mathbf{d}_{1} V_{\text{ref}} \left(\frac{C_{1}}{C_{2}}\right) + \hat{V}_{\text{in}} \left(\frac{C_{1}}{C_{2}}\right) + \hat{V}_{\text{in}}$$

$$+\frac{\hat{v}_{_{a4}}(1+R_{_{5}}C_{_{2}}s)-\hat{v}_{_{a5}}(C_{_{2}}(1+R_{_{4}}C_{_{1}}s))}{C_{_{2}}C_{_{1}}+s\left[R_{_{4}}C_{_{2}}+\frac{1}{GB}(1+C_{_{2}}C_{_{1}})\right]+s^{2}\frac{1}{GB}(R_{_{5}}+R_{_{4}})C_{_{2}}}$$

If the ON impedance of the switches is small and $C_1=C_2$, it can be shown that output noise due to both switches is

$$v_{_{4-5RMS}} = \sqrt{kTR_{_{SW}}GB}$$

where
$$R_{S4} = R_{S5} = R_{SW}$$
 45

If the ON impedance of the switches is small and it is assumed that $C_1=C_2=C$, $R_{S4}=R_{S5}=R_{SW}$, it can be shown that noise on output is

$$\begin{aligned} \boldsymbol{\vartheta}_{4-5RMS} &= \sqrt{kTR_4GB} \\ \boldsymbol{\vartheta}_{1N-RMS\phi_2} &= \sqrt{\frac{2kT}{C} + kTR_4GB} \\ \boldsymbol{\vartheta}_{1N-RMS} &= \sqrt{\frac{kT}{2C} + \frac{kTR_4GB}{4}} \end{aligned}$$

We have now shown:

If the ON impedance of the switches is small and it is assumed that $C_1=C_2=C$, it can be shown that

$$\hat{v}_{\rm in-RMS} = \sqrt{\frac{kT}{2C} + \frac{kTR_4GB}{4}}$$

Too much GB or too large of R_{SW} can increase sampled noise voltage

Too small of R_{SW} will not derive any benefit and will increase power, area, and driving problems

GB must be large enough to have complete settling

Switch Sizing

Sizing switches for constant input

Consider any first-order RC network

Target Settling: to $\frac{1}{2}$ LSB in time T_{CLK}/2 for worst-case transition

Switch Sizing

Target Settling: to $\frac{1}{2}$ LSB in time T_{CLK}/2 for worst-case transition

Switch Sizing

To settle to $\frac{1}{2}$ LSB in time $T_{\text{CLK}}/2$

$$\mathbf{R}_{_{\text{SW}}} = \frac{1}{\mathbf{C}_{_{\text{H}}}\mathbf{f}_{_{\text{CLK}}}\mathbf{2}ln(\mathbf{2})(\mathbf{n}_{_{\text{ST}}}\mathbf{+1})}$$

Recall minimum GB requirement (which is usually what will be designed for)

$$GB = \frac{\left(n_{s\tau} + 1\right) 2 ln2}{\beta} f_{clk}$$

Eliminating f_{CLK} we obtain

 $R_{sw}C_{_{H}} = \frac{1}{\beta GB}$ Define excess switch sizing factor θ by

$$R_{_{SW}}=\frac{\theta}{C_{_{H}}\beta GB}$$

Often $\theta <<1$ even with minimum sized devices and in this case v_{4-5RMS} is negligible

$$\hat{\boldsymbol{v}}_{\text{IN-RMS}} = \sqrt{\frac{\text{kT}}{\text{C}_{1} + \text{C}_{2}}}$$
55

Two popular SC gain stages

 \triangleleft

 V_{REF}

Basic SC gain stage

(a)

57

Basic SC gain stage

(b)

It can be shown that $V_{out} = \frac{C_{1}}{C_{2}} \left(V_{IN} + dV_{REF} + \vec{V}_{II} \right) + V_{IA} \frac{C_{I}}{C_{2}} \left(\frac{1}{1 + R_{4}C_{1}S + \frac{S}{GB} \left(1 + \frac{C_{1}}{C_{2}} + R_{4}C_{1}S \right)} \right)$

Basic SC gain stage

When is the continuous-time SC noise really of concern?

Recall

$$GB = \frac{(n_{sT} + 1)2In2}{\beta} f_{CLK}$$

$$\sqrt{\frac{kT}{C}} = \frac{1V}{2^{n+1}}$$

$$R_{4} = \frac{1}{C_{1}\beta GB}$$

Eliminating GB and C

$$R_{4} = \frac{1}{kT2^{2n_{ST}+2} (n_{sT}+1) 2ln2f_{CLK}}$$

When is the continuous-time SC noise really of concern?

$$R_{MAX} = \frac{1}{kT2^{2n_{ST}+2} (n_{ST}+1) 2ln2f_{CLK}}$$

R_{MAX}(fCLK,n)

Clock Speed

		10	100	1K	10K	100K	1M	10M	100M	1G
Resolution	4	4.7E+15	4.7E+14	4.7E+13	4.7E+12	4.7E+11	4.7E+10	4.7E+09	4.7E+08	4.7E+07
	5	9.8E+14	9.8E+13	9.8E+12	9.8E+11	9.8E+10	9.8E+09	9.8E+08	9.8E+07	9.8E+06
	6	2.1E+14	2.1E+13	2.1E+12	2.1E+11	2.1E+10	2.1E+09	2.1E+08	2.1E+07	2.1E+06
	7	4.6E+13	4.6E+12	4.6E+11	4.6E+10	4.6E+09	4.6E+08	4.6E+07	4.6E+06	4.6E+05
	8	1.0E+13	1.0E+12	1.0E+11	1.0E+10	1.0E+09	1.0E+08	1.0E+07	1.0E+06	1.0E+05
	9	2.3E+12	2.3E+11	2.3E+10	2.3E+09	2.3E+08	2.3E+07	2.3E+06	2.3E+05	2.3E+04
	10	5.2E+11	5.2E+10	5.2E+09	5.2E+08	5.2E+07	5.2E+06	522353.4	52235.3	5223.5
	11	1.2E+11	1.2E+10	1.2E+09	1.2E+08	1.2E+07	1.2E+06	119706	11970.6	1197.1
	12	2.8E+10	2.8E+09	2.8E+08	2.8E+07	2.8E+06	2.8E+05	27624.46	2762.4	276.2
	13	6.4E+09	6.4E+08	6.4E+07	6412821	641282.1	64128.21	6412.821	641.3	64.1
	14	1.5E+09	1.5E+08	1.5E+07	1496325	149632.5	14963.25	1496.3	149.63	14.96
	15	3.5E+08	3.5E+07	3.5E+06	350701.2	35070	3507	350.7	35.07	3.51
	16	8.3E+07	8.3E+06	8.3E+05	82517.92	8252	825	82.51792	8.25	0.83
	17	1.9E+07	1.9E+06	194834	19483.4	1948	195	19.4834	1.94834	0.194834
	18	4.6E+06	4.6E+05	46144.89	4614.5	461.4	46.1	4.614489	0.461449	0.046145
	19	1.1E+06	109594.1	10959.41	1095.9	109.6	11.0	1.095941	0.109594	0.010959
	20	2.6E+05	26093.84	2609.384	260.9384	26.09384	2.609384	0.260938	0.026094	0.002609

What about this one?

Series-Parallel Structure

Sampling noise from all stages must be referred back to input !

$$\boldsymbol{\mathcal{V}}_{_{\mathrm{INRMS}}}^{2} = \boldsymbol{\mathcal{V}}_{_{\mathrm{IN1}}}^{2} + \frac{1}{\mathsf{A}_{_{1}}^{2}} \boldsymbol{\mathcal{V}}_{_{\mathrm{IN2}}}^{2} + \frac{1}{\mathsf{A}_{_{1}}^{2} \mathsf{A}_{_{2}}^{2}} \boldsymbol{\mathcal{V}}_{_{\mathrm{IN3}}}^{2} + \dots + \frac{1}{\mathsf{A}_{_{1}}^{2} \mathsf{A}_{_{2}}^{2}} \boldsymbol{\mathcal{V}}_{_{\mathrm{INn}}}^{2}$$
$$\boldsymbol{\mathcal{V}}_{_{\mathrm{INRMS}}} = \sqrt{\boldsymbol{\mathcal{V}}_{_{\mathrm{IN1}}}^{2} + \sum_{k=2}^{n} \left(\frac{\boldsymbol{\mathcal{V}}_{_{\mathrm{INk}}}}{\prod_{i=1}^{k-1} \mathsf{A}_{_{i}}} \right)^{2}}$$

See Katyal, Lin and Geiger, ISCAS, for capacitor sizing for minimization of noise and power

Even numbered stages sampled with ϕ_1 and odd stages sampled with ϕ_2

Sampling Timing

Quiet sampling is important

Pipelined Data Converter Design Guidelines

Issue

- ADC offsets, Amp Offsets, Finite Op Amp 1. Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate
- 2. Op Amp Gain causes finite gain errors and introduces noninearity
- 3. Op amp settling must can cause errors
- 4. Power dissipation strongly dependent upon GB of Op Amps
- 5. Choice of FB Amplifier Architecture seriously impacts performance

Correct interpretation of α_k 's is critical 6.

Strategy

- Out-range protection circuitry will remove this 1. problem and can make pipeline robust to these effects if α_k 's correctly interpreted
 - a) Use Extra Comparators
 - b) Use sub-radix structures
- 2. Select op amp architecture that has a) acceptable signal swing
 - Select gain large enough at boundary of range to b) minimize nonlinearity and gain errors
- 3. Select GB to meet settling requirements (degrade modestly to account for slewing)
- 4. Minimize C₁, use energy efficient op amps, share or shut down op amp when not used, scale power in latter stages, eliminate input S/H if possible, interleave at high frequencies. Good (near optimal) noise distribution strategy should be followed.
- 5. Bottom plate sampling, bootatrapping, clock advance to reduce aperature uncertainty, critical GB, parasitic insensitivity needed, β dependent upon architecture and phase, compensation for worstcase β , TG if needed 6.
 - a) Accurately set α_k values

b) Use analog or digital calibration

Pipelined Data Converter Design Guidelines

7.

Issue

7. Sampling operation inherently introduces a sampled-noise due to noise in resistors

Strategy

Select the capacitor sizes to meet noise requirements. Continuous-time noise can also be present but is often dominated by sampled noise. Size switches to meet settling and noise requirements. Excessive GB will cause noise degradation in some applications, include noise from all stages (not just first stage).

The ideal sampling operation

Should track V_{IN} in the TRACK mode Should accurately sample V_{IN} at transition to HOLD mode

Should track V_{IN} in the TRACK mode Should accurately sample V_{IN} at transition to HOLD mode

For high frequency inputs, an attenuation error will occur

Affects absolute accuracy but not linearity

But, if switches are nonlinear, will introduce a nonlinear error that can be very substantial

Signal dependent R_{SW} or switch nonlinearity will ₇₂ introduce nonlinear errors

Bootstrapping Principle

During phase $\phi_1 \ C_X$ is charged to V_{DD} and MOS switch is OFF During phase $\phi_1 \ C_X$ is placed across V_{GS} and MOS switch is ON With bootstrapping, R_{SW} is independent of V_{IN}

Conceptual Realization

- May have difficult time turning on some switches
- May stress gate oxide !

Bootstrapping Principle

From Galton, ISSCC 04

Note: Signal does not affect turn-on time or voltage of sampling switches (all relative to VDD or GND)

Bootstrapping Principle

Fig. 7. Bootstrap circuit and switching device.

From Abo and Gray JSC 99

Bootstrapping Principle

From Roberts MWSCAS 2000

Bootstrapping Principle

Fig. 7. Transistor-level implementation of the bootstrapped switch.

From Kaiser JSC 2001

Figure 5: Bootstrapped switch.

From Steensgaard ISCAS 1999
Pipelined Data Converter Design Guidelines

Issue

- ADC offsets, Amp Offsets, Finite Op Amp 1. Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate
- 2. Op Amp Gain causes finite gain errors and introduces noninearity
- 3. Op amp settling must can cause errors
- 4. Power dissipation strongly dependent upon GB of Op Amps
- 5. Choice of FB Amplifier Architecture seriously impacts performance

Correct interpretation of α_k 's is critical 6.

Strategy

- Out-range protection circuitry will remove this 1. problem and can make pipeline robust to these effects if α_k 's correctly interpreted
 - a) Use Extra Comparators
 - b) Use sub-radix structures
- 2. Select op amp architecture that has a) acceptable signal swing
 - Select gain large enough at boundary of range to b) minimize nonlinearity and gain errors
- 3. Select GB to meet settling requirements (degrade modestly to account for slewing)
- 4. Minimize C₁, use energy efficient op amps, share or shut down op amp when not used, scale power in latter stages, eliminate input S/H if possible, interleave at high frequencies. Good (near optimal) noise distribution strategy should be followed.
- 5. Bottom plate sampling, bootatrapping, clock advance to reduce aperature uncertainty, critical GB, parasitic insensitivity needed, β dependent upon architecture and phase, compensation for worstcase β , TG if needed 6.
 - a) Accurately set α_k values

b) Use analog or digital calibration

Pipelined Data Converter Design Guidelines

7.

Issue

7. Sampling operation inherently introduces a sampled-noise due to noise in resistors

Strategy

Select the capacitor sizes to meet noise requirements. Continuous-time noise can also be present but is often dominated by sampled noise. Size switches to meet settling and noise requirements. Excessive GB will cause noise degradation in some applications, include noise from all stages (not just first stage).

- 8. Signal-dependent tracking errors at input introduce linearity degradation
- 8. Bootstrapped switches almost always used at input stage. Must avoid stressing oxide on bootstrapped switches

End of Lecture 26