EE 505

Lecture 26

ADC Design

- Pipeline
- Noise
- Switch Sizing
- Bootstrapped Switches
- Aperature Uncertainty

Review from last lecture Power Dissipation

Capacitor sizing to meet noise requirements
For each stage: $\quad \mathrm{P}=\left[\mathrm{V}_{\mathrm{stp}} \bullet \mathrm{GB} \bullet \mathrm{C}_{\downarrow}\right]\left[\mathrm{V}_{\mathrm{ve}}\right]$
Should capacitor area be allocated to put dominant noise on input stage or later stages?

If part of the total noise comes from latter stages, size of capacitors on input stage can be reduced

An optimal noise distribution strategy should be followed!

Figure of Merit for Comparing Energy Efficiency of Op Amps

For Single-stage MOS implementation (with ref FD op amp or telescopic cascade op amp)

Review from last lecture
 Energy Efficiency of Popular Single-Stage Op Amps

- Basic Single-Stage Diff Amp
- Current Mirror Op Amp
- Telescopic Cascode
- Folded Cascode
- Gain-Boosted Telescopic Cascode
- Gain-Boosted Folded Cascode
- -gm Compensated Single-Stage
- Telescopic Cascode Positive Feedback

Basic Sing fe-Stage FD Op Amp

C_{L} on other output Not Shown
CMFB Not Shown

Is the linear settling time proportional to the reciprocal of the power even if parasitics are considered?

No - reach a point of diminishing returns as power is increased
$\mathrm{GB}_{\text {MAX }}$ independent of C_{L}
What is a practical point of diminishing returns?

Is the strategy ofian frimimizsing ${ }^{\text {and }} V_{E B 1}$ to minimize settling time justifiable even if parasitics are considered?

No - but an optimal value of $\mathrm{V}_{\mathrm{EB} 1}$ can be obtained

Is the strategy of minimizing $V_{\text {EB } 1}$ to minimize settling time justifiable even if parasitics are considered?

For large P, obtain

$$
V_{E B, M A X}=V_{E B 3} \sqrt{\frac{\mu_{\mathrm{p}} C_{X_{n}}}{\mu_{n} C_{X_{\mathrm{p}}}}}
$$

Substituting into $\mathrm{GB}_{\text {MAX }}$ expression, obtain

$$
\mathrm{GB}_{\mathrm{MAX}}=\frac{\sqrt{\frac{\mu_{n} \mu_{\mathrm{p}}}{\mathrm{C}_{\mathrm{Xn}} \mathrm{C}_{\mathrm{Xp}}}} \mathrm{~V}_{\mathrm{EB} 3}}{4 \mathrm{~L}_{\mathrm{MIN}}^{2}}=\frac{\omega_{\mathrm{Tp}}}{4 \sqrt{\mathrm{C}_{\mathrm{Xn}} \mathrm{C}_{\mathrm{Xp}}}} \sqrt{\frac{\mu_{\mathrm{p}}}{\mu_{\mathrm{n}}}}
$$

Is the strategy of minimizing $V_{\text {EB1 }}$ to minimize settling time justifiable even if parasitics are considered?

$$
G B_{M A X}=\frac{\omega_{T_{p}}}{4 \sqrt{C_{X_{n}} C_{X p}}} \sqrt{\frac{\mu_{\mathrm{p}}}{\mu_{\mathrm{n}}}}
$$

If $\mathrm{GB}_{\text {MAX }}$ is not high enough, interleaving may provide a viable solution in a given technology node

Improved"Energy Efficiency Op Amps

For some closed-loop gains the two-stage op amp is more power efficient than the single-stage Op Amp

See ISCAS 2005
Power Dependence of Feedback Amplifiers on OpAmp Architecture

Performance Limitations
 (consider amplifier, ADC and DAC issues)

\Rightarrow ADC

- Break Points (offsets)

DAC

- DAC Levels (offsets)
- Out-range (over or under range)
- Amplifier
\Rightarrow Offset voltages
\Rightarrow Settling Time

- Nonlinearity (primarily open loop)
\Rightarrow Open-loop
\Rightarrow Out-range
- Gain Errors
\Rightarrow Inadequate open loop gain
- Component mismatch
\longrightarrow Power Dissipation
- kT/C switching noise

I/O Power Dissipation

- Driving the output pads can consume considerable power

For a single bit line

$$
\mathrm{P}=\mathrm{f}_{\mathrm{cL}} \mathrm{~V}_{\text {sup }}^{2} \mathrm{C}_{\mathrm{L}}
$$

For an n-bit ADC

$$
\mathrm{P}=\mathrm{n} \bullet \mathrm{f}_{\mathrm{cc}} \mathrm{~V}_{\text {sup }}^{2} \mathrm{C}_{\mathrm{L}}
$$

Example: if $n=14, V_{\text {SUP }}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}_{\mathrm{CL}}=100 \mathrm{MHz}, 50 \%$ change

$$
\mathrm{P}=14 \cdot 10^{\circ} \bullet \frac{1}{2} \cdot 3.3^{2} \cdot 5 \mathrm{E}-12=35 \mathrm{~mW}
$$

I/O Power Dissipation

- Driving the output pads can consume considerable power

For a single bit line

$$
P=f_{c a} V_{\text {sip }}^{2} C_{L}
$$

$$
\mathrm{P} \cong 2 \mathrm{f}_{\mathrm{cu}} \mathrm{~V}_{\mathrm{sif}}^{\mathrm{c}} \mathrm{C}
$$

For an n-bit ADC

$$
\mathrm{P}=\mathrm{n} \bullet \mathrm{f}_{\mathrm{c}} \mathrm{~V}_{\text {sup }}^{2} \mathrm{C}_{\mathrm{L}}
$$

$$
\mathrm{P}=2 \mathrm{n} \bullet \mathrm{f}_{\mathrm{cL}} \mathrm{~V}_{\mathrm{sup}}^{2} \mathrm{C}_{\mathrm{L}}
$$

Example: if $\mathrm{n}=14, \mathrm{~V}_{\mathrm{SUP}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}_{\mathrm{CL}}=100 \mathrm{MHz}, 50 \%$ change

$$
P=35 \mathrm{~mW}
$$

$$
P \cong 70 \mathrm{~mW}
$$

Interstage Amplifiers

Typical Finite-Gain Inter-stage Amplifier (shown single-ended with 1-bit/stage)

Ideally

$$
\mathrm{V}_{\mathrm{ovr}}=\mathrm{V}_{\mathrm{w}}\left(1+\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}\right)-\mathrm{d}_{1}\left(\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}\right) \mathrm{V}_{\mathrm{wef}}
$$

Gain =2.00000

Clock Phasing and Clock Generation

Signal-dependent Sampling Seriously Degrades Linearity if $\mathrm{V}_{\text {IN }}$ is not constant during sampling

Boot-strapping sampling or bottom-plate sampling needed

Flip-Around Amplifier

Clock Phasing and Clock Generation

$$
\begin{aligned}
& \beta_{2}=\frac{C_{2}}{C_{1}+C_{2}} \\
& \beta_{1}=1
\end{aligned}
$$

$$
\mathrm{A}_{\mathrm{Frz}}=1+\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}=\frac{1}{\beta_{2}}
$$

Bottom-Plate Sampling

Must advance φ_{1} if

Flip-Around Amplifier

Clock Phasing and Clock Generation

Flip-Around Amplifier Clock Timing
Reduces Sampling noise if quiet when $\varphi_{1 \mathrm{~A}}$ transitions

Clock Phasing and Clock Generation

Must advance φ_{1} if $V_{\text {IN }}$ is not constant

Popular SC Amplifier

Clock Phasing and Clock Generation

Parasitic Sensitive
Signal-dependent delays

Clock Phasing and Clock Generation

How is GB determined?

$$
G B_{R e s} \cong \frac{2 \ln (2)\left(\mathrm{n}_{\mathrm{st}}+1\right)}{\beta_{\mathrm{suN}}} \mathrm{f}_{\mathrm{clK}}
$$

(to settle to $1 / 2 \mathrm{LSB}$ derived in Lecture 24)

How are switches sized?

$$
\mathrm{R}_{\mathrm{sw}}=\frac{1}{\mathrm{Cf}_{\mathrm{ak}} 2 \ln (2)\left(\mathrm{n}_{\mathrm{st}}+1\right)}
$$

(to settle to $1 / 2$ LSB - will be derived later)

May need to use TG switch if large signals present but prefer to avoid!

Pipelined Data Converter Design Guidelines

Issue

1. ADC offsets, Amp Offsets, Finite Op Amp Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate
2. Op Amp Gain causes finite gain errors and introduces noninearity
3. Op amp settling must can cause errors
4. Power dissipation strongly dependent upon GB of Op Amps
5. Choice of FB Amplifier Architecture seriously impacts performance

Strategy

1. Out-range protection circuitry will remove this problem and can make pipeline robust to these effects if α_{k} 's correctly interpreted
a) Use Extra Comparators
b) Use sub-radix structures
2. a) Select op amp architecture that has acceptable signal swing
b) Select gain large enough at boundary of range to minimize nonlinearity and gain errors
3. Select GB to meet settling requirements (degrade modestly to account for slewing)
4. Minimize C_{L}, use energy efficient op amps, share or shut down op amp when not used,scale power in latter stages, eliminate input S / H if possible, interleave at high frequencies. Good (near optimal) noise distribution strategy should be followed.
5. Bottom plate sampling, bootatrapping, clock advance to reduce aperature uncertainty,critical GB, parasitic insensitivity needed, β dependent upon architecture and phase, compensation for worstcase β, TG if needed

Have probably not included the most important issue in these guidelines:

Pipelined Data Converter Design Guidelines

Issue

1. ADC offsets, Amp Offsets, Finite Op Amp Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate
2. Op Amp Gain causes finite gain errors and introduces noninearity
3. Op amp settling must can cause errors
4. Power dissipation strongly dependent upon GB of Op Amps
5. Choice of FB Amplifier Architecture seriously impacts performance
6. Correct interpretation of α_{k} 's is critical

Strategy

1. Out-range protection circuitry will remove this problem and can make pipeline robust to these effects if α_{k} 's correctly interpreted
a) Use Extra Comparators
b) Use sub-radix structures
2. a) Select op amp architecture that has acceptable signal swing
b) Select gain large enough at boundary of range to minimize nonlinearity and gain errors
3. Select GB to meet settling requirements (degrade modestly to account for slewing)
4. Minimize C_{L}, use energy efficient op amps, share or shut down op amp when not used,scale power in latter stages, eliminate input S / H if possible, interleave at high frequencies. Good (near optimal) noise distribution strategy should be followed.
5. Bottom plate sampling, bootatrapping, clock advance to reduce aperature uncertainty,critical GB, parasitic insensitivity needed, β dependent upon architecture and phase, compensation for worstcase β, TG if needed
a) Accurately set α_{k} values
b) Use analog or digital calibration

Sampling Noise

If the ON impedance of the switches is small and it is assumed that $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}, \mathrm{R}_{\mathrm{S} 4}=\mathrm{R}_{\mathrm{S} 5}=\mathrm{R}_{\mathrm{SW}}$, it can be shown that for $\mathrm{C}_{1}=\mathrm{C}_{2}$

$$
\hat{\boldsymbol{v}}_{\text {wiws }}=\sqrt{\frac{\mathrm{kT}}{2 \mathrm{C}}+\frac{\mathrm{kT}}{4} \mathrm{R}_{\mathrm{sw}} \mathrm{~GB}}
$$

Too much $G B$ or too large of $R_{S W}$ can increase sampled noise voltage
Too small of R_{Sw} will not derive any benefit and will increase power, area, and driving problems

GB must be large enough to have complete settling

Sampling Noise

- Capacitors introduce no noise
- Noise is, however, present in switches that take samples
- This switch noise causes SNR problems in the amplifier if not correctly managed

Sampling Noise

Power spectral density of any resistor, R_{SW}, is given by

$$
S_{m}=4 \mathrm{KTR}_{\ldots .}
$$

This is thermal noise and often termed "white" noise since the spectral dissipation is uniform for all f

Sampling Noise

Theorem 1 If $\boldsymbol{v}_{\mathrm{n}}(\mathrm{t})$ is a continuous-time zero-mean noise source with power spectral density S_{V}, then the spectral density of $\boldsymbol{V}_{\text {OUT }}$ is given by the expression

$$
\mathrm{S}_{v a r}=\left.\mathrm{T}(\mathrm{~s})\right|_{s=j \omega} ^{2} \mathrm{~S}_{v}
$$

The RMS value of a continuous-time random variable $\mathrm{V}(\mathrm{T})$ is defined to be

$$
\mathrm{V}_{\text {вus }}=E\left(\sqrt{\lim _{T \rightarrow \infty}\left(\frac{1}{\mathrm{~T}} \int_{0}^{T} \mathrm{~V}^{2}(\mathrm{t}) \mathrm{dt}\right)}\right)
$$

The RMS value of a random sequence $\langle\mathrm{V}(\mathrm{kT})\rangle$ is defined to be

$$
\hat{\mathrm{V}}_{\mathrm{pus}}=E\left(\sqrt{\lim _{N>\infty}\left(\frac{1}{N^{n=1}} \sum^{N} \mathrm{~V}^{2}(\mathrm{kT})\right)}\right)
$$

(the operator E is the expected value operator)

Sampling Noise

Theorem 1 If $\boldsymbol{v}_{\mathrm{n}}(\mathrm{t})$ is a continuous-time zero-mean noise source with power spectral density S_{V}, then the spectral density of $\boldsymbol{V}_{\mathrm{OUT}}$ is given by the expression

$$
\mathbf{S}_{v_{\text {ovr }}}=\mid \mathrm{T}(\mathbf{s})_{s=j \omega}^{2} \mathbf{S}_{v}
$$

Theorem 2 If $\mathcal{V}(\mathrm{t})$ is a continuous-time zero-mean noise voltage with power spectral density S_{V}, then the RMS value of the continuous-time noise is given by

$$
V_{\mathrm{zus}}=\sqrt{\int_{i=0}^{\infty} \mathrm{S}_{\mathrm{v}} \mathrm{df}}
$$

Note: There are some parts of the hypothesis of this theorem that have not been stated such as stationary of the distribution and no correlation between samples spaced T seconds apart..

Sampling Noise

$S_{m}=4 \mathrm{kTR}$

$$
S_{\text {voor }}=4 \mathrm{kTR}\left(\frac{1}{1+(\mathrm{RC} \omega)^{2}}\right)
$$

Sampling Noise

$$
\begin{aligned}
& \boldsymbol{S}_{\text {voor }}=4 \mathrm{kTR}\left(\frac{1}{1+(\mathrm{RC} \omega)^{2}}\right) \quad \mathrm{V}_{\text {IN }} \\
& \boldsymbol{V}_{\text {vemar }}=\sqrt{\int_{\mathrm{i}=0}^{\infty} S_{\text {ver }} \text { af }}=\sqrt{\int_{f=0}^{\infty} \frac{4 \mathrm{kTR}}{1+\omega^{2} \mathrm{R}^{2} \mathrm{C}^{2}} \mathrm{df}} \\
& \text { Recall: }
\end{aligned}
$$

$$
\begin{gathered}
\int_{y=0}^{\infty} \frac{1}{1+y^{2}} d y=\left.\left(\tan ^{-1} y\right)\right|_{y=0} ^{\infty}=\frac{\pi}{2} \\
\boldsymbol{V}_{\max }=\sqrt{\int_{i=0}^{\infty} S_{v a x} \mathrm{df}}=\sqrt{\frac{\mathrm{KT}}{\mathrm{C}}}
\end{gathered}
$$

Change of variable: $z=\omega R C, d z=2 \pi R C d f$

Sampling Noise

"kT/C" Noise at T=300K

- Since noise is independent of $\mathrm{V}_{\text {REF }}$, would like to make $\mathrm{V}_{\text {REF }}$ as large as possible to minimize C sizing
- Scaling to lower supply voltage has a negative impact on capacitor sizing (scaling supply by 2 requires increasing C by factor of 4 to maintain SNR)

Sampling Noise

Capacitance vs Resolution ($\mathrm{V}_{\mathrm{REF}}=1 \mathrm{~V}, 1 / 2$ LSB level)

Example: 14-bit ADC C=4.6pF

Sampling Noise

Theorem 3 If $\mathrm{V}(\mathrm{t})$ is a continuous-time zero-mean noise voltage and $<\mathrm{V}(\mathrm{kT})>$ is a sampled version of $\mathrm{V}(\mathrm{t})$ sampled at times $\mathrm{T}, 2 \mathrm{~T}, \ldots$. then the RMS value of the continuous-time waveform is the same as that of the sampled version of the waveform. This can be expressed as

$$
V_{\text {mus }}=\hat{V}_{\text {mus }}
$$

Note: There are some parts of the hypothesis of this theorem that have not been stated such as stationary of the distribution and no correlation between samples spaced T seconds apart..

Sampling Noise

Theorem 4 If $\mathrm{V}(\mathrm{t})$ is a continuous-time zero-mean noise source and $\langle\mathrm{V}(\mathrm{kT})\rangle$ is a sampled version of $\mathrm{V}(\mathrm{t})$ sampled at times $\mathrm{T}, 2 \mathrm{~T}, \ldots$. then the standard deviation of the random variable $\mathrm{V}(\mathrm{kT})$, denoted as σ_{v} satisfies the expression

$$
\sigma_{\mathrm{v}}=\mathrm{V}_{\mathrm{Rus}}=\hat{\mathrm{V}}_{\text {Rus }}
$$

Theorem 5 The RMS value and the standard deviation of the noise voltage that occurs in the basic switched-capacitor sampler is related to the capacitor value by the expression

$$
\hat{\mathrm{V}}_{\text {Rus }}=\mathrm{V}_{\text {Rus }}=\sigma_{v}=\sqrt{\frac{\mathrm{kT}}{\mathrm{C}}}
$$

Sampling Noise

$$
v_{\operatorname{mex}}=\sqrt{\frac{\mathrm{kT}}{\mathrm{C}}}
$$

Key Result, Continuous-time noise at $\mathrm{V}_{\text {OUT }}$

$$
\hat{V}_{\operatorname{meses}}=\sqrt{\frac{\mathrm{kT}}{\mathrm{C}}}
$$

Key Result, Discrete-time noise at $V_{\text {OUT }}$

Sampling Noise

But noise is actually a bit worse than simply kT / C

$$
\begin{gathered}
\beta_{2}=\frac{C_{2}}{C_{1}+C_{2}} \\
\beta_{1}=1 \\
A_{\mathrm{FP2}}=1+\frac{C_{2}}{C_{1}}=\frac{1}{\beta_{2}}
\end{gathered}
$$

Hold Mode

Sampling Noise

RMS Noise Voltage on capacitors C_{1} and C_{2}

$$
\begin{aligned}
& v_{v i e}=\sqrt{\frac{k T}{C_{1}}} \Longrightarrow \hat{v}_{\text {mem }}=\sqrt{\frac{k T}{C_{1}}} \\
& v_{v_{12}}=\sqrt{\frac{k T}{C_{2}}} \Longrightarrow \hat{v}_{v_{2 m}}=\sqrt{\frac{k T}{C_{2}}}
\end{aligned}
$$

Sampling Noise

$$
\begin{aligned}
& V_{\text {our }}=V_{\text {ww }}\left(\frac{1+C_{2} / C_{1}+S_{2}\left(R_{4}+R_{5}\right)}{C_{2} / C_{1}+s\left[R_{4} C_{2}+\frac{1}{G B}\left(1+C_{2} / C_{1}\right)\right]+S^{2} \frac{1}{G B}\left(R_{5}+R_{4}\right) C_{2}}\right) \\
& -d_{1} V_{\text {ReF }}\left(\frac{1+R_{5} C_{2} s}{C_{2} / C_{1}+S\left[R_{4} C_{2}+\frac{1}{G B}\left(1+C_{2} / C_{1}\right)\right]+S^{2} \frac{1}{G B}\left(R_{5}+R_{4}\right) C_{2}}\right) \\
& +\frac{\hat{V}_{s}\left(1+R_{3} C_{2} s\right)+\hat{V}_{s}\left(C_{2} / C_{1}\left(1+R_{4} C_{s}\right)\right)}{C_{2} / C_{1}+\left[R_{4} C_{2}+\frac{1}{G B}\left(1+C_{2} / C_{4}\right)\right]+s^{2} \frac{1}{G B}\left(R_{s}+R_{s}\right) C_{2}} \\
& +\frac{\hat{\boldsymbol{v}}_{4}\left(1+R_{s} C_{s} s\right)-\hat{v}_{s}\left(C_{2} / C_{1}\left(1+R_{C} C_{s}\right)\right)}{C_{2} / C_{4}+\left[R_{4} C_{2}+\frac{1}{G B}\left(1+C_{2} / C_{4}\right)\right]+s^{2} \frac{1}{G B}\left(R_{s}+R_{4}\right) C_{2}}
\end{aligned}
$$

Sampling Noise

$$
V_{\mathrm{ou}}=V_{m}\left(1+\frac{C_{1}}{C_{2}}\right)-d_{1} V_{m w}\left(\frac{C_{1}}{C_{8}}\right)+\hat{V}_{n}\left(\frac{C_{1}}{C_{2}}\right)+\hat{V}_{m}
$$

If the ON impedance of the switches is small and $\mathrm{C}_{1}=\mathrm{C}_{2}$, it can be shown that output noise due to both switches is

$$
V_{\mathrm{stsus}}=\sqrt{k T R_{\mathrm{sw}} \mathrm{~GB}}
$$

where $\mathrm{R}_{\mathrm{S} 4}=\mathrm{R}_{\mathrm{S} 5}=\mathrm{R}_{\mathrm{Sw}}$

Sampling Noise

$$
\beta_{2}=\frac{C_{2}}{C_{1}+C_{2}}
$$

If the ON impedance of the switches is small and it is assumed that $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}, \mathrm{R}_{\mathrm{S} 4}=\mathrm{R}_{\mathrm{S} 5}=\mathrm{R}_{\mathrm{SW}}$, it can be shown that noise on output is

$$
\begin{aligned}
& \boldsymbol{v}_{\text {smes }}=\sqrt{\mathrm{kTRGB}} \\
& \hat{v}_{\text {vemas }}=\sqrt{\frac{2 \mathrm{KT}}{\mathrm{C}}+\mathrm{kTRGB}} \\
& \hat{v}_{\text {max }}=\sqrt{\frac{\mathrm{kT}}{2 \mathrm{C}}+\frac{\mathrm{kTR} \mathrm{~GB}}{4}}
\end{aligned}
$$

we have now shown: Sampling Noise

If the ON impedance of the switches is small and it is assumed that $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$, it can be shown that

$$
\hat{V}_{\text {waws }}=\sqrt{\frac{\mathrm{kT}}{2 \mathrm{C}}+\frac{\mathrm{kTR} \mathrm{R}_{4} \mathrm{~GB}}{4}}
$$

Too much $G B$ or too large of $R_{\text {Sw }}$ can increase sampled noise voltage
Too small of R_{Sw} will not derive any benefit and will increase power, area, and driving problems

GB must be large enough to have complete settling

Switch Sizing

Sizing switches for constant input
Consider any first-order RC network
Target Settling: to $1 / 2$ LSB in time $\mathrm{T}_{\text {CLK }} / 2$ for worst-case transition

Switch Sizing

Target Settling: to $1 / 2$ LSB in time $\mathrm{T}_{\text {CLK }} / 2$ for worst-case transition

$$
\begin{aligned}
& V_{R E F}\left(1-e^{-\frac{t}{R C}}\right)=V_{R E F}-V_{R E F} \frac{1}{2^{n_{S T}+1}} \\
& e^{-\frac{t}{R C}}=\frac{1}{2^{n_{S T}+1}}
\end{aligned}
$$

$$
R=\frac{t}{\left(n_{S T}+1\right) C \ln 2}
$$

$$
R_{S W}=\frac{1}{f_{C L K}\left(n_{S T}+1\right) C 2 \ln 2}
$$

Switch Sizing

To settle to $1 / 2$ LSB in time $\mathrm{T}_{\text {CLK }} / 2$

$$
\mathrm{R}_{\mathrm{sw}}=\frac{1}{\mathrm{C}_{\mathrm{H}} \mathrm{f}_{\mathrm{cok}} 2 \ln (2)\left(\mathrm{n}_{\mathrm{st}}+1\right)}
$$

Recall minimum GB requirement (which is usually what will be designed for)

$$
\mathrm{GB}=\frac{\left(\mathrm{n}_{\mathrm{st}}+1\right) 2 \ln 2}{\beta} \mathrm{f}_{\mathrm{cuk}}
$$

Eliminating $\mathrm{f}_{\mathrm{CLK}}$ we obtain

$$
R_{s w} C_{H}=\frac{1}{\beta G B}
$$

Define excess switch sizing factor θ by

$$
R_{\mathrm{sw}}=\frac{\theta}{\mathrm{C}_{\mathrm{n}} \beta \mathrm{~GB}}
$$

Sampling Noise

Summary of Flip-around SC gain stage

$$
\begin{aligned}
& \beta_{2}=\frac{C_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}} \\
& \mathrm{~A}_{\mathrm{rs}}=1+\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}
\end{aligned}
$$

$$
\hat{v}_{\text {veses }}=\sqrt{\frac{\mathrm{kT}}{\mathrm{C}_{1}+\mathrm{C}_{2}}+\left(\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}\right)^{2} \hat{\boldsymbol{v}}_{4}^{2}}
$$

$$
R_{4}=\frac{\theta}{C \beta G B}
$$

$$
v_{\mathrm{mox}}=\sqrt{2 \mathrm{kT} \frac{\theta}{\mathrm{C}, \pi}\left(1+\left(\frac{\beta}{1-\beta}\right)^{2}\right)} \sqrt{\int_{\omega=0}^{\infty} \frac{1+\theta^{2} \omega^{2}}{\omega^{e}(2 \beta \theta)^{2}+\omega^{2}\left(\left[\theta+\frac{\beta}{1-\beta}\right]^{2}-\frac{4 \theta \beta^{2}}{1-\beta}\right)+\left(\frac{\beta}{1-\beta}\right)^{2}} \mathrm{~d} \omega}
$$

Often $\theta \ll 1$ even with minimum sized devices and in this case $\boldsymbol{v}_{4 \text {-5RMS }}$ is negligible

$$
\hat{\boldsymbol{V}}_{\text {maws }}=\sqrt{\frac{\mathrm{kT}}{\mathrm{C}_{1}+\mathrm{C}_{2}}}
$$

Sampling Noise

Two popular SC gain stages

Sampling Noise

Basic SC gain stage

(a)

(b)

Sampling Noise

Basic SC gain stage

(a)

(b)

It can be shown that

$$
V_{\text {orr }}=\frac{C_{2}}{C_{2}}\left(V_{m}+\mathrm{dV}_{\text {ves }}+V_{m i n}\right)+V_{\text {min }} \frac{C_{1}}{\mathrm{C}_{2}}\left(\frac{1}{1+R_{4} \mathrm{Cs}+\frac{\mathrm{s}}{\mathrm{~GB}}\left(1+\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}+\mathrm{R}_{4} \mathrm{Cs}\right)}\right)
$$

Sampling Noise

Basic SC gain stage

(a)

(b)

$$
v_{\omega \operatorname{monax}}=\sqrt{\sqrt{\frac{2 k T \theta}{C \pi}}\left(\frac{1-\beta}{\beta}\right)^{2} \int_{\omega=0}^{\infty}\left|\frac{1}{1+\omega^{2}\left[(1+\theta)^{2}-2 \theta \beta\right]+\omega^{2}(\theta \beta)^{2}}\right|^{2} d \omega}
$$

$$
\hat{\boldsymbol{v}}_{\text {mems }}=\sqrt{\frac{\mathrm{KT}}{\mathrm{C}_{1}}+\left(\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}\right)^{2} \hat{\boldsymbol{V}}_{\text {ortans }}^{2}} \quad \underset{\theta \ll 1}{\longrightarrow} \quad \hat{\boldsymbol{V}}_{\text {wame }}=\sqrt{\frac{\mathrm{KT}}{\mathrm{C}_{1}}}
$$

Sampling Noise

Two popular SC gain stages

Sampling Noise

When is the continuous-time SC noise really of concern?

Recall

$$
\begin{aligned}
& \mathrm{GB}=\frac{\left(\mathrm{n}_{\mathrm{sr}}+1\right) 2 \ln 2}{\beta} \mathrm{f}_{\mathrm{cuk}} \\
& \sqrt{\frac{k T}{C}}=\frac{1 \mathrm{~V}}{2^{n+1}} \\
& R_{4}=\frac{1}{C \beta G B} \\
& \text { Eliminating GB and C } \\
& R_{4}=\frac{1}{k T 2^{2 \mathrm{gat}^{2}+2}\left(n_{\mathrm{sT}}+1\right) 2 \ln 2 f_{\mathrm{clK}}}
\end{aligned}
$$

Sampling Noise

When is the continuous-time SC noise really of concern?

$$
R_{\max }=\frac{1}{k T 2^{2 \operatorname{sistr} 2}\left(n_{s T}+1\right) 2 \ln 2 f_{c L K}}
$$

$\mathrm{R}_{\text {MAX }}(f C L K, n)$

Sampling Noise

What about this one?

Series-Parallel Structure

Sampling Noise

Sampling noise from all stages must be referred back to input !

$$
\begin{aligned}
& \boldsymbol{V}_{\text {news }}^{2}=\boldsymbol{V}_{\text {wn }}^{2}+\frac{1}{\mathrm{~A}_{1}^{2}} \boldsymbol{V}_{\mathrm{mv}}^{2}+\frac{1}{\mathrm{~A}_{1}^{2} \mathrm{~A}_{2}^{2}} \boldsymbol{V}_{\mathrm{ms}}^{2}+\ldots+\frac{1}{\mathrm{~A}_{1}^{2} \mathrm{~A}_{2}^{2} \cdots \mathrm{~A}_{\mathrm{ni1}}^{2}} \boldsymbol{V}_{\text {wn }}^{2} \\
& \boldsymbol{V}_{\text {wnws }}=\sqrt{\boldsymbol{V}_{\text {wn }}^{2}+\sum_{k=2}^{n}\left(\frac{\boldsymbol{V}_{\text {ww }}}{\prod_{n=1}^{n} A_{i}}\right)^{2}}
\end{aligned}
$$

See Katyal,Lin and Geiger, ISCAS, for capacitor sizing for minimization of noise and power

Sampling Timing

Even numbered stages sampled with φ_{1} and odd stages sampled with φ_{2}

Sampling Timing

Pipelined Data Converter Design Guidelines

Issue

1. ADC offsets, Amp Offsets, Finite Op Amp Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate
2. Op Amp Gain causes finite gain errors and introduces noninearity
3. Op amp settling must can cause errors
4. Power dissipation strongly dependent upon GB of Op Amps
5. Choice of FB Amplifier Architecture seriously impacts performance
6. Correct interpretation of α_{k} 's is critical

Strategy

1. Out-range protection circuitry will remove this problem and can make pipeline robust to these effects if α_{k} 's correctly interpreted
a) Use Extra Comparators
b) Use sub-radix structures
2. a) Select op amp architecture that has acceptable signal swing
b) Select gain large enough at boundary of range to minimize nonlinearity and gain errors
3. Select GB to meet settling requirements (degrade modestly to account for slewing)
4. Minimize C_{L}, use energy efficient op amps, share or shut down op amp when not used,scale power in latter stages, eliminate input S / H if possible, interleave at high frequencies. Good (near optimal) noise distribution strategy should be followed.
5. Bottom plate sampling, bootatrapping, clock advance to reduce aperature uncertainty,critical GB, parasitic insensitivity needed, β dependent upon architecture and phase, compensation for worstcase β, TG if needed
a) Accurately set α_{k} values
b) Use analog or digital calibration

Pipelined Data Converter Design Guidelines

Issue

7. Sampling operation inherently introduces a sampled-noise due to noise in resistors

Strategy
7. Select the capacitor sizes to meet noise requirements. Continuous-time noise can also be present but is often dominated by sampled noise. Size switches to meet settling and noise requirements. Excessive GB will cause noise degradation in some applications, include noise from all stages (not just first stage).

Bootstrapped Switch

The ideal sampling operation

Should track $\mathrm{V}_{\text {IN }}$ in the TRACK mode Should accurately sample V_{IN} at transition to HOLD mode

Bootstrapped Switch

The ideal sampling operation

Single $\mathrm{V}_{\mathbb{N}^{N}}$-referenced switch

Bottom plate sampling

Should track $\mathrm{V}_{\text {IN }}$ in the TRACK mode Should accurately sample $\mathrm{V}_{\mathbb{I N}}$ at transition to HOLD mode

Bootstrapped Switch

The ideal sampling operation

For high frequency inputs, an attenuation error will occur

Affects absolute accuracy but not linearity
But, if switches are nonlinear, will introduce a nonlinear error that can be very substantial
Signal dependent $R_{s w}$ or switch nonlinearity will 72 introduce nonlinear errors

Bootstrapped Switch

Bootstrapping Principle

During phase $\bar{\phi}_{1} C_{x}$ is charged to $V_{D D}$ and MOS switch is OFF During phase $\phi_{1} C_{x}$ is placed across $V_{G S}$ and MOS switch is $O N$ With bootstrapping, $R_{S W}$ is independent of $V_{I N}$

Bootstrapped Switch

Bootstrapping Principle

Conceptual Realization

- May have difficult time turning on some switches
- May stress gate oxide !

Bootstrapped Switch

Bootstrapping Principle

From Galton, ISSCC 04
Note: Signal does not affect turn-on time or voltage of sampling switches (all relative to VDD or GND)

Bootstrapped Switch

Bootstrapping Principle

Fig. 7. Bootstrap circuit and switching device.

From Abo and Gray JSC 99

Bootstrapped Switch

Bootstrapping Principle

(b)

From Roberts MWSCAS 2000

Bootstrapped Switch

Bootstrapping Principle

Fig. 7. Transistor-level implementation of the bootstrapped switch.

From Kaiser JSC 2001

Bootstrapped Switch

Figure 5: Bootstrapped switch.
From Steensgaard ISCAS 1999

Pipelined Data Converter Design Guidelines

Issue

1. ADC offsets, Amp Offsets, Finite Op Amp Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate
2. Op Amp Gain causes finite gain errors and introduces noninearity
3. Op amp settling must can cause errors
4. Power dissipation strongly dependent upon GB of Op Amps
5. Choice of FB Amplifier Architecture seriously impacts performance
6. Correct interpretation of α_{k} 's is critical

Strategy

1. Out-range protection circuitry will remove this problem and can make pipeline robust to these effects if α_{k} 's correctly interpreted
a) Use Extra Comparators
b) Use sub-radix structures
2. a) Select op amp architecture that has acceptable signal swing
b) Select gain large enough at boundary of range to minimize nonlinearity and gain errors
3. Select GB to meet settling requirements (degrade modestly to account for slewing)
4. Minimize C_{L}, use energy efficient op amps, share or shut down op amp when not used,scale power in latter stages, eliminate input S / H if possible, interleave at high frequencies. Good (near optimal) noise distribution strategy should be followed.
5. Bottom plate sampling, bootatrapping, clock advance to reduce aperature uncertainty,critical GB, parasitic insensitivity needed, β dependent upon architecture and phase, compensation for worstcase β, TG if needed
a) Accurately set α_{k} values
b) Use analog or digital calibration

Pipelined Data Converter Design Guidelines

Issue

7. Sampling operation inherently introduces a sampled-noise due to noise in resistors
8. Signal-dependent tracking errors at input introduce linearity degradation

Strategy
7. Select the capacitor sizes to meet noise requirements. Continuous-time noise can also be present but is often dominated by sampled noise. Size switches to meet settling and noise requirements. Excessive GB will cause noise degradation in some applications, include noise from all stages (not just first stage).
8. Bootstrapped switches almost always used at input stage. Must avoid stressing oxide on bootstrapped switches

End of Lecture 26

